Interplay between ER Exit Code and Domain Conformation in CFTR Misprocessing and Rescue
نویسندگان
چکیده
Multiple mutations in cystic fibrosis transmembrane conductance regulator (CFTR) impair its exit from the endoplasmic reticulum (ER). We compared two processing mutants: DeltaF508 and the ER exit code mutant DAA. Although both have severe kinetic processing defect, DAA but not DeltaF508 has substantial accumulation in its mature form, leading to higher level of processing at the steady state. DAA has much less profound conformational abnormalities. It has lower Hsp70 association and higher post-ER stability than DeltaF508. The ER exit code is necessary for DeltaF508 residual export and rescue. R555K, a mutation that rescues DeltaF508 misprocessing, improves Sec24 association and enhances its post-ER stability. Using in situ limited proteolysis, we demonstrated a clear change in trypsin sensitivity in DeltaF508 NBD1, which is reversed, together with that of other domains, by low temperature, R555K or both. We observed a conversion of the proteolytic pattern of DAA from the one resembling DeltaF508 to the one similar to wild-type CFTR during its maturation. Low temperature and R555K are additive in improving DeltaF508 conformational maturation and processing. Our data reveal a dual contribution of ER exit code and domain conformation to CFTR misprocessing and underscore the importance of conformational repair in effective rescue of DeltaF508.
منابع مشابه
COPII-dependent export of cystic fibrosis transmembrane conductance regulator from the ER uses a di-acidic exit code
Cystic fibrosis (CF) is a childhood hereditary disease in which the most common mutant form of the CF transmembrane conductance regulator (CFTR) DeltaF508 fails to exit the endoplasmic reticulum (ER). Export of wild-type CFTR from the ER requires the coat complex II (COPII) machinery, as it is sensitive to Sar1 mutants that disrupt normal coat assembly and disassembly. In contrast, COPII is not...
متن کاملCooperative assembly and misfolding of CFTR domains in vivo.
The cystic fibrosis transmembrane conductance regulator (CFTR) architecture consists of two membrane spanning domains (MSD1 and -2), two nucleotide binding domains (NBD1 and -2), and a regulatory (R) domain. Several point mutations lead to the channel misprocessing, with limited structural perturbation of the mutant domain. To gain more insight into the basis of CFTR folding defect, the contrib...
متن کاملImproved maturation of CFTR by an ER export signal.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel in the plasma membrane of several epithelial cells. Maturation of CFTR is inefficient in most cells, with only a fraction of nascent chains being properly folded and transported to the cell surface. The most common mutation in CFTR, CFTR-deltaF508, leads to the genetic disease cystic fibrosis. CF...
متن کاملHsp90 Cochaperone Aha1 Downregulation Rescues Misfolding of CFTR in Cystic Fibrosis
The pathways that distinguish transport of folded and misfolded cargo through the exocytic (secretory) pathway of eukaryotic cells remain unknown. Using proteomics to assess global cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein interactions (the CFTR interactome), we show that Hsp90 cochaperones modulate Hsp90-dependent stability of CFTR protein folding in the endoplasm...
متن کاملPalmitoylation and ubiquitination regulate exit of the Wnt signaling protein LRP6 from the endoplasmic reticulum.
Canonical Wnt signaling is initiated by binding of Wnt proteins to members of the Frizzled family and subsequent complex formation with lipoprotein receptor-related proteins 5/6 (LRP5/6). Here, we show that LRP6 is palmitoylated on a juxtamembranous cysteine and that palmitoylation is required for exit from the endoplasmic reticulum (ER). We propose that palmitoylation serves to tilt the long, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 21 شماره
صفحات -
تاریخ انتشار 2010